Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions.

نویسندگان

  • Liangliang Wu
  • Yan Zou
  • Chao Deng
  • Ru Cheng
  • Fenghua Meng
  • Zhiyuan Zhong
چکیده

Reduction and pH dual-sensitive reversibly core-crosslinked polypeptide micelles were developed from lipoic acid (LA) and cis-1,2-cyclohexanedicarboxylic acid (CCA) decorated poly(ethylene glycol)-b-poly(L-lysine) (PEG-P(LL-CCA/LA)) block copolymers for active loading and triggered intracellular release of doxorubicin (DOX). PEG-P(LL18-CCA4/LA14) and PEG-P(LL18-CCA8/LA10) (M(n PEG) = 5.0 kg/mol) formed nano-sized micelles that were readily crosslinked in the presence of a catalytic amount of dithiothreitol (DTT) in phosphate buffer (pH 7.4, 10 mM). PEG-P(LL18-CCA4/LA14) micelles displayed an elevated DOX loading over PEG-P(LL14-LA14) controls likely due to presence of ionic interactions between DOX and CCA. These core-crosslinked polypeptide micelles while exhibiting high stability against extensive dilution and high salt concentration were quickly dissociated into unimers in the presence of 10 mM DTT. The in vitro release studies showed that DOX release from PEG-P(LL18-CCA4/LA14) micelles at pH 7.4 and 37 °C was significantly inhibited by crosslinking (i.e. less than 20% release in 24 h). The release of DOX was, however, doubled under endosomal pH of 5.0, possibly triggered by cleavage of the acid-labile amide bonds of CCA. In particular, rapid DOX release was observed under a reductive condition containing 10 mm glutathione (GSH), in which 86.0% and 96.7% of DOX were released in 24 h at pH 7.4 and 5.0, respectively, under otherwise the same conditions. MTT assays demonstrated that these core-crosslinked polypeptide micelles were practically non-toxic up to a tested concentration of 1.0 mg/mL, while DOX-loaded micelles caused pronounced cytotoxic effects to HeLa and HepG2 tumor cells with IC50 (inhibitory concentration to produce 50% cell death) of ca. 12.5 μg DOX equiv/mL following 48 h incubation. Confocal microscopy observations revealed that DOX-loaded crosslinked PEG-P(LL18-CCA4/LA14) micelles more efficiently delivered and released DOX into the nuclei of HeLa cells than PEG-P(LL14-LA14) counterparts. These dual-bioresponsive core-crosslinked polypeptide micelles have appeared as an advanced platform for targeted cancer therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface charge switchable and core cross-linked polyurethane micelles as a reduction-triggered drug delivery system for cancer therapy

The extracellular stability versus intracellular drug release and the long blood stream circulation versus enhanced cell uptake are two dilemmas for micellar drug delivery systems. To resolve the above two problems, a novel core cross-linked polyurethane micelles with redox sensitive and pH-responsive surface charge switchable properties were prepared and investigated as anti-cancer drug carrie...

متن کامل

Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release.

It is still a major challenge for targeted cancer chemotherapy to design stable biodegradable micellar drug delivery systems which show a rapid and complete intracellular drug release. Here, reversibly core-crosslinked pH-responsive biodegradable micelles were developed based on poly(ethylene glycol)-poly(2,4,6-trimethoxybenzylidene-pentaerythritol carbonate-co-pyridyl disulfide carbonate) [PEG...

متن کامل

Hydrolysable core crosslinked particle for receptor-mediated pH-sensitive anticancer drug delivery.

Biodegradable micelle systems with both extracellular stabilities and specific targeting properties are highly desirable for anti-cancer drug delivery. Here, we report a biodegradable and crosslinkable poly(propylene fumarate)-co-poly(lactide-co-glycolide)-co-poly(ethylene glycol) (PPF-PLGA-PEG) copolymer conjugated with folate (FA) molecules for receptor-mediated delivery of doxorubicin. Micel...

متن کامل

pH-responsive polymeric micelles with core–shell–corona architectures as intracellular anti-cancer drug carriers

Polymeric micelles with core-shell-corona nanoarchitecture were designed for intracellular therapeutic anti-cancer drug carriers. Poly(styrene-b-acrylic acid-b-ethylene glycol) (PS-b-PAA-b-PEG) asymmetric triblock copolymer underwent self-assembly in aqueous solution to form spherical micelles with hydrophobic PS core, anionic PAA shell and hydrophilic PEG corona. The anti-cancer drug (doxorubi...

متن کامل

Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells.

Polymer micelles have emerged as promising carriers for controlled release applications, however, several limitations of micelle-based drug delivery have also been reported. To address these issues, we have synthesized a functional biodegradable and cytocompatible block copolymer based on methoxypoly(ethyleneglycol)-b-poly(ε-caprolactone-co-α-azido-ε-caprolactone) (mPEG-b-poly(εCL-co-αN3εCL)) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 34 21  شماره 

صفحات  -

تاریخ انتشار 2013